quantile() is the inverse of cdf().
Usage
# S3 method for class 'Bernoulli'
quantile(x, probs, drop = TRUE, elementwise = NULL, ...)Arguments
- x
A
Bernoulliobject created by a call toBernoulli().- probs
A vector of probabilities.
- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
xbe evaluated at all elements ofprobs(elementwise = FALSE, yielding a matrix)? Or, ifxandprobshave the same length, should the evaluation be done element by element (elementwise = TRUE, yielding a vector)? The default ofNULLmeans thatelementwise = TRUEis used if the lengths match and otherwiseelementwise = FALSEis used.- ...
Arguments to be passed to
qbinom. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs (if drop = TRUE, default) or a matrix with
length(probs) columns (if drop = FALSE). In case of a vectorized
distribution object, a matrix with length(probs) columns containing all
possible combinations.
Examples
set.seed(27)
X <- Bernoulli(0.7)
X
#> [1] "Bernoulli(p = 0.7)"
mean(X)
#> [1] 0.7
variance(X)
#> [1] 0.21
skewness(X)
#> [1] -0.8728716
kurtosis(X)
#> [1] -1.238095
random(X, 10)
#> [1] 0 1 0 1 1 1 1 1 1 1
pdf(X, 1)
#> [1] 0.7
log_pdf(X, 1)
#> [1] -0.3566749
cdf(X, 0)
#> [1] 0.3
quantile(X, 0.7)
#> [1] 1
cdf(X, quantile(X, 0.7))
#> [1] 1
quantile(X, cdf(X, 0.7))
#> [1] 0