quantile() is the inverse of cdf().
Usage
# S3 method for class 'Cauchy'
quantile(x, probs, drop = TRUE, elementwise = NULL, ...)Arguments
- x
A
Cauchyobject created by a call toCauchy().- probs
A vector of probabilities.
- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
xbe evaluated at all elements ofprobs(elementwise = FALSE, yielding a matrix)? Or, ifxandprobshave the same length, should the evaluation be done element by element (elementwise = TRUE, yielding a vector)? The default ofNULLmeans thatelementwise = TRUEis used if the lengths match and otherwiseelementwise = FALSEis used.- ...
Arguments to be passed to
qcauchy. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs (if drop = TRUE, default) or a matrix with
length(probs) columns (if drop = FALSE). In case of a vectorized
distribution object, a matrix with length(probs) columns containing all
possible combinations.
Examples
set.seed(27)
X <- Cauchy(10, 0.2)
X
#> [1] "Cauchy(location = 10, scale = 0.2)"
mean(X)
#> [1] NaN
variance(X)
#> [1] NaN
skewness(X)
#> [1] NaN
kurtosis(X)
#> [1] NaN
random(X, 10)
#> [1] 9.982203 10.053876 9.916324 10.336325 10.167877 10.626557 10.046357
#> [8] 10.001540 10.091892 10.137681
pdf(X, 2)
#> [1] 0.0009940971
log_pdf(X, 2)
#> [1] -6.913676
cdf(X, 2)
#> [1] 0.00795609
quantile(X, 0.7)
#> [1] 10.14531
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 7))
#> [1] 7