quantile() is the inverse of cdf().
Usage
# S3 method for class 'Uniform'
quantile(x, probs, drop = TRUE, elementwise = NULL, ...)Arguments
- x
A
Uniformobject created by a call toUniform().- probs
A vector of probabilities.
- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
xbe evaluated at all elements ofprobs(elementwise = FALSE, yielding a matrix)? Or, ifxandprobshave the same length, should the evaluation be done element by element (elementwise = TRUE, yielding a vector)? The default ofNULLmeans thatelementwise = TRUEis used if the lengths match and otherwiseelementwise = FALSEis used.- ...
Arguments to be passed to
qunif. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs (if drop = TRUE, default) or a matrix with
length(probs) columns (if drop = FALSE). In case of a vectorized
distribution object, a matrix with length(probs) columns containing all
possible combinations.
Examples
set.seed(27)
X <- Uniform(1, 2)
X
#> [1] "Uniform(a = 1, b = 2)"
random(X, 10)
#> [1] 1.971750 1.083758 1.873870 1.329231 1.222276 1.401648 1.072499 1.002450
#> [9] 1.137094 1.191909
pdf(X, 0.7)
#> [1] 0
log_pdf(X, 0.7)
#> [1] -Inf
cdf(X, 0.7)
#> [1] 0
quantile(X, 0.7)
#> [1] 1.7
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 0.7))
#> [1] 1