These are partly contrived data from Kmenta (1986), constructed to illustrate estimation of a simultaneous-equation econometric model. The data are an annual time-series for the U.S. economy from 1922 to 1941. The values of the exogenous variables D, and F, and A are real, while those of the endogenous variables Q and P are simulated according to the linear simultaneous equation model fit in the examples.
data("Kmenta", package = "ivreg")
A data frame with 20 rows and 5 columns.
food consumption per capita.
ratio of food prices to general consumer prices.
disposable income in constant dollars.
ratio of preceding year's prices received by farmers to general consumer prices.
time in years.
Kmenta, J. (1986) Elements of Econometrics, 2nd ed., Macmillan.
data("Kmenta", package = "ivreg")
deq <- ivreg(Q ~ P + D | D + F + A, data = Kmenta) # demand equation
seq <- ivreg(Q ~ P + F + A | D + F + A, data = Kmenta) # supply equation
summary(deq, tests = TRUE)
#>
#> Call:
#> ivreg(formula = Q ~ P + D | D + F + A, data = Kmenta)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -3.4305 -1.2432 -0.1895 1.5762 2.4920
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 94.63330 7.92084 11.947 1.08e-09 ***
#> P -0.24356 0.09648 -2.524 0.0218 *
#> D 0.31399 0.04694 6.689 3.81e-06 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 1.966 on 17 degrees of freedom
#> Multiple R-Squared: 0.7548, Adjusted R-squared: 0.726
#> Wald test: 23.81 on 2 and 17 DF, p-value: 1.178e-05
#>
summary(seq, tests = TRUE)
#>
#> Call:
#> ivreg(formula = Q ~ P + F + A | D + F + A, data = Kmenta)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -4.8724 -1.2593 0.6415 1.4745 3.4865
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 49.53244 12.01053 4.124 0.000795 ***
#> P 0.24008 0.09993 2.402 0.028785 *
#> F 0.25561 0.04725 5.410 5.79e-05 ***
#> A 0.25292 0.09966 2.538 0.021929 *
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 2.458 on 16 degrees of freedom
#> Multiple R-Squared: 0.6396, Adjusted R-squared: 0.572
#> Wald test: 10.7 on 3 and 16 DF, p-value: 0.0004196
#>